
Cross-Region Benchmarks

Max Ganz II @ Redshift Observatory

28th January 2022

https://www.redshift-observatory.ch

Abstract

Within the resolving power of the benchmark suite used, Redshift node types
are identical in performance across regions, with the single exception of the
dc2.large node type, which is much slower in five regions; af-south-1,
ap-east-1, ap-southeast-3, eu-south-1, and me-south-1.

Contents

Introduction 3

Test Method 4
Benchmarks . 7

Disk (read) . 9
Disk (read and write) . 9
Network . 11
Processor . 12

Results 14
af-south-1 . 14
ap-east-1 . 14
ap-northeast-1 . 14
ap-northeast-2 . 15
ap-northeast-3 . 15
ap-south-1 . 15
ap-southeast-1 . 15
ap-southeast-2 . 15
ap-southeast-3 . 16
ca-central-1 . 16
cn-north-1 . 16
cn-northwest-1 . 16
eu-central-1 . 16
eu-north-1 . 16
eu-south-1 . 16
eu-west-1 . 17
eu-west-2 . 17
eu-west-3 . 17
me-south-1 . 17
sa-east-1 . 17
us-east-1 . 18
us-east-2 . 18
us-gov-east-1 . 18
us-gov-secret-1 . 18
us-gov-topsecret-1 . 18
us-gov-topsecret-2 . 18
us-gov-west-1 . 18

1

us-west-1 . 18
us-west-2 . 19

Discussion 20

Conclusions 27

Unexpected Findings 28

Revision History 29
v1 . 29
v2 . 29
v3 . 29
v4 . 29

Appendix A : Raw Data Dump 30

About the Author 31
Redshift Cluster Cost Reduction Service 31

2

Introduction

AWS provide in the documentation the specification of each type of Redshift
node, and the specification is given in terms of processing power, memory in
gigabytes, storage capacity, I/O (disk or network is not clear) and the price of
the node type.

There are here two matters of interest; how do nodes compare to each other,
and does node performance vary by region.

If the performance of a node type significantly varies by region, there are in
effect additional node types, and so first we need to know if node types are
consistent across regions.

Comparing nodes involves creating a benchmark suite and running that suite
on the different node types.

Comparing regions involves running the benchmark suite, on the different node
types, in each AWS region.

With regard to differences by region, in the documentation, the only aspect of
specification which varies by region is price.

In a soon to be published white paper investigating query compilation, I stum-
bled across the first evidence that node performance could vary significantly by
region.

If this is the case, it is important. If a cluster costs say 100k per year in a slow
region, it might cost only (say) 85k per year in a fast region, because it would
need fewer nodes.

However, I note prices vary by region, and it might be price differences in fact
reflect (at least in part) performance differences.

This white paper then implements a benchmark suite and runs it on the different
node types, and in each region, and examines cross-region performance.

Although this naturally provides benchmark data for the different node types,
this white paper does not discuss cross-node performance, because first it must
be seen if node types are consistent across regions, and because this is itself a
large topic which needs a white paper and plenty of investigation of its own; any
single white paper should be compact and focused.

3

https://aws.amazon.com/redshift/pricing/

Test Method

To begin with, in each region being tested, which is all of them except China and
US Government, a two node cluster of each node type being tested (normally the
three inexpensive small types, but with the expensive large types being tested
in two regions, so at least some numbers for them exist) is brought up.

Each benchmark in the benchmark suite is then run five times, with the slowest
and fastest result being discarded (actually of course, all data is retained, but
the slowest and fastest are not used when computing statistics).

The clusters are then shut down.

There are four benchmarks, two for disk, one for network and one for processor,
which will be described in detail.

All benchmarks produce a time in seconds, where the shorter the time taken,
the better the performance of the node type.

Now, it became apparent during development that you cannot in fact really test
a cluster.

What I mean by this is that a cluster is composed of nodes, and the nodes are
basically EC2 instances, and they can vary a lot in individual performance (it’s
not out of the ordinary to see a node taking twice as long as another node, for
exactly the same work).

A query issued to a cluster normally runs on all nodes, and so completes only
when the slowest node finishes working.

Benchmarking a cluster - issuing benchmarking queries to the cluster as a whole
- actually really means benchmarking the slowest node.

This made me realize that what I really had to do was benchmark nodes. It
is the population of nodes, which are drawn upon to form clusters, and their
spectrum of performance, which are actually of interest.

A second (and unsurprising) observation during development was that all the
slices on a node run at about the same speed. If that node is slow, all its slices
are slow; if that node is fast, all its slices are fast. Slices are after all simply the
group of processes which are a query.

Accordingly, the benchmarks run on a single slice per node, but in parallel and
independently on all the nodes in a cluster, so we produce as many benchmarks
of individual nodes as possible from a cluster; the more benchmarks, the more

4

data, the better. (There are one or two exceptions to this, where we actually
or effectively end up with less than one slice per node, which will be explained
when the benchmarks are described).

For example, the disk (read/write) benchmark reads 512mb of data and then
writes 512mb of data. This is done on a single slice on every node, with the
tables being read and written using key distribution to keep all their values on a
single slice. No network traffic occurs; the nodes operate wholly independently,
and we time only the single segment which performed the scan and insert.

It is then that the results being published, which are the mean duration and the
standard deviation of that mean on the basis of date (day resolution), region,
node type, benchmark type, have the mean being computed from all individual
node benchmarks of that type produced on that day, in that region, for that
node type, regardless of the cluster the node was in.

Note however that each benchmark runs five times, with the slowest and fastest
result being discarded, and this discarding of results is performed on a per-
cluster basis. This is because we are trying to find a reasonable performance
figure for those nodes at that time; it might have been some spurious activity
specific to that cluster (Redshift itself runs a metric ton of its own queries, all
the time) happened to impact a particular run of the benchmark and it is this
type of spurious variance we look to eliminate.

The alternative is to gather up all the benchmark results of the same type and
then cull the slowest and fastest results - but imagine we did have a cluster
composed of nodes which were all genuinely slow, and in fact had no spurious
variance at all, all the benchmark run results would because of the slowness of
the node would fall into the extreme end of the range of results for all nodes
and be culled, and we would have eliminated a set of perfectly valid benchmark
results.

With regard to timing the benchmarks, timings are taken from the Redshift
system tables, and so there is none of the uncertainty and variability introduced
by client-side timing.

The timing offered by Redshift is quite limited. What’s available are the start
and end times of each segment, on a per-slice basis. The benchmarks have
been designed so that the work being benchmarked occurs entirely in the first
segment, and so the timing is the time taken for the first segment. Of course,
all segments run in parallel, but in the benchmarks the later segments are by
the work being done by the benchmark queries blocked from doing work, and
so are idle, until the first segment completes.

All clusters are configured with one queue of five slots which has 100% memory,
SQA off, CSC off, auto-analyze off, query rewrite to use MVs off (although,
of course, auto-creation of now totally unused MVs cannot be disabled and so
could be messing up these benchmarks - but there’s absolutely nothing which
can be done about this, or about auto-vacuum, which also cannot be disabled.)

Note in all cases the benchmark is a single query, which operates all nodes
concurrently, and we then procure from the system tables timings for each node
(which is to say, for each slice, and there is normally one per node, which is
running the benchmark). Multiple concurrent queries are only issued during

5

the benchmark setup phase, where the tables used by the benchmarks are being
populated with rows.

Before I begin to describe the benchmarks in detail, note that the benchmarks
are not very pure; by this I mean to say it’s usually impossible to benchmark
only disk, or only network, or only processor, because a benchmark is necessarily
an SQL query, which is quite a blunt instrument when it comes to benchmarking,
as almost any query will involve all three.

I have striven to produce benchmarks which are as pure as possible and in this,
the first disk benchmark is pure (it is disk read only), the second disk benchmark
is impure (it performs disk read and disk write, because there is no way to obtain
write without read), the network benchmark is impure as it performs a disk read
then a network distribution, and the processor benchmark is pure.

As such, when considering the second and third benchmarks, you need to men-
tally take into account the performance of the disk read benchmark, and subtract
that. (This cannot be done automatically, because timings in the system tables
are only available on a per-segment basis, and the second and third benchmarks
both perform their scan in the same segment they perform the work we’re really
interested in (disk write/network activity), so I cannot know how long the scan
step took - all I can do is make a benchmark for scan steps on their own, and
then provide that benchmark to the reader.)

However, in any event, pure or impure, where the benchmarks are identical
across regions and node types, they do perfectly well allow for reasonable mean-
ingful comparisons between nodes, and between regions; if a given query can be
seen normally to take say, ten seconds in one region, but only five in another,
something is most definitely going on, whether or not that query is pure.

Finally, I must explain the absence, for the first time, of the source code used
to produce the evidence this white paper is based upon.

There are a number of reasons for this;

1. The code starts Redshift clusters, and does so in almost all regions. To
start a Redshift cluster, either a default VPC and its associated objects
must exist, or they must be created by the script. I have code to create
a VPC and its associated objects, but there are reliability issues with
boto3 even with a single cluster in a single region; I would have to do
a lot of debugging, expensive debugging, to reach the point where I had
enough reliability for the code to be safe. As such, users must ensure they
have configured all regions correctly for use with the script, which is a
non-trivial requirement, both for them, and for me to document, because
VPC configuration is a nightmare.

2. Where the code is not currently safe to create and delete so many VPCs,
I current use, where possible, the default VPC. I have configured all the
regions I use to have a default VPC (and Redshift configuration) and
checked they are correct. However, I have two regions which have EC2
Classic and which have had their default VPC deleted; such regions can-
not have a default VPC re-created. As such, my code uses default VPC in
all but those two regions, where it uses a pre-configured (to avoid the reli-
ability issues of creating and deleting VPCs and their associated objects)

6

non-default VPC. As such, I am not able to actually test the code other
users would run, because I am unable to run code which uses a default
VPC in all regions. Code which is not tested does not work.

3. The code spins us, when used to test all node types, about 150 clusters,
including plenty of the big, expensive, 15 USD an hour nodes. This is
not a toy. This is an expensive mistress who can leave you with a very
large bill to pay. I would be comfortable releasing the code if I had strong
confidence in boto3, which necessarily is used to start and stop clusters,
and in the code which operates the clusters - but I absolutely do not. With
so many nodes, all sorts of rare bugs emerge, such as the Redshift WLM
process manager crashing and the query which caused it simply hanging
forever. There is no way this code has the necessary reliability to be safe
in the hands of whomever might download it.

4. The code, as it is, reads significant information from, and writes its re-
sults to, a Postgres database. I could rewrite the code so it runs without
Postgres, but this is a non-trivial piece of work, and given the other issues,
this contributes to the choice of not releasing the software with the white
paper.

However, of course, the software has to be available so other people can exam-
ine it for mistakes and the like, and as such is available on request. Email me
“max dot ganz at redshiftresearchproject dot org”.

Benchmarks
I am sensitive to the time taken for the benchmarks to run, because testing two
node clusters of three node types over twenty-two regions is a lot of Redshift
nodes and they cost money. (This white paper cost about 500 USD, as it took
quite a few runs to debug reliability issues first with my code, and then with
Redshift.)

Fortunately, AWS some time ago for Redshift moved from a minimum billing
period of one hour to one second; without that, none of this would be happening.

The most time consuming work in a benchmark is populating the source tables
used to provide data to the benchmark. Accordingly, as it is the most time
efficient method I can see, it is then that a source table with a single column
is set up and populated with exactly 256mb of data on the first slice only of
each node, and this source table is used by all benchmarks (which in some cases
controls which slices actually do work by specifying in a where clause which
values to operate upon, which is properly tantamount to specifying which slices
perform work).

Normally I would populate a source table from scratch for each benchmark and
indeed, for each iteration of a benchmark.

(Note that although I write 256mb of data, necessarily 256mb of data is also writ-
ten by Redshift, to the system managed oid column, which is an uncompressed
int8, so a total of 512mb is written.)

The single column is the distribution key, and the value of each slice’s 256mb

7

of data is that necessary for the data to be on the first slice of each node in the
cluster (the benchmark determines these values during setup).

The amount of data is most definitely on the small side for the disk (read) bench-
mark (which really needs at least something like 32 gigabytes), but about right
for the for the disk (read and write) operation and the networking benchmark.

The source table DDL;

create table source
(
column_1 int8 not null encode raw distkey

)
diststyle key;

Note the table is unsorted. Remember that each row is being specifically di-
rected to a given slice by having a particular, chosen value written; so all the
rows on any slice always have the same value. Sorting is irrelevant and a com-
plicating factor.

Unfortunately, I forgot that the devs made what appears to be an amateur-hour
blunder in the introduction of sortkey auto. It used to be if a sortkey was not
specified, the table was unsorted. Now instead, when sorting is not specified the
table is made auto - so Redshift can change the sort order at any time. However,
I often specifically want unsorted tables, because with small tables you save a
lot of disk space. It looks to me this functionality was inadvertently removed,
which is mind-blowing.

Figure 1: You did what?

As it is, all the benchmarks have been producing the same results over many
runs, over many regions, and so I do not think table re-sorting has always just
happened to be happening at the right moment to mess things up. In the future
though, I’ll handle this by using a compound sorted table.

8

Disk (read)
The benchmark simply issues a count(column_1) on the source table, but
with a where clause which restriction the count to rows on the first slice of the
first node.

As such only one benchmark is produced per cluster.

The reason for this is that changing the where clause to indicate more than one
slice completely changes the step-plan, with the work being done being utterly
different (and not useful in any way for the purpose of this benchmark).

I hope to improve this benchmark, but it suffices for now.

The benchmark SQL;

select
count(column_1)

from
source

where
column_1 = 5;

The value used in the where clause instructs the query to select from and only
from the first slice on the first node; here the example value 5 is used.

The step-plan of the query;
qid | stream | segment | step | node_id | slice_id | step_type | rows | bytes | seg_start_time | seg_duration | schematable_name | notes

-----+--------+---------+------+---------+----------+-----------+----------+-----------+-----------------+--------------+--------------------------+---
383 | 0 | 0 | 0 | 0 | 0 | scan | 33534464 | 536551424 | 19:50:27.371562 | 0.145862 | public.source | scan data from user table
383 | 0 | 0 | 1 | 0 | 0 | project | 33534464 | | 19:50:27.371562 | 0.145862 | |
383 | 0 | 0 | 2 | 0 | 0 | project | 33534464 | | 19:50:27.371562 | 0.145862 | |
383 | 0 | 0 | 3 | 0 | 0 | aggregate | 1 | 8 | 19:50:27.371562 | 0.145862 | | ungrouped, scalar aggregation in memory
383 | 1 | 1 | 0 | 0 | 0 | scan | 1 | 8 | 19:50:27.519093 | 8.4e-05 | | scan data from temp table
383 | 1 | 1 | 1 | 0 | 0 | return | 1 | 8 | 19:50:27.519093 | 8.4e-05 | |
383 | 1 | 2 | 0 | | 12811 | scan | 1 | 8 | 19:50:27.518628 | 0.000578 | pg_catalog.pg_tablespace | scan data from network to temp table
383 | 1 | 2 | 1 | | 12811 | aggregate | 1 | 16 | 19:50:27.518628 | 0.000578 | | ungrouped, scalar aggregation in memory
383 | 2 | 3 | 0 | | 12811 | scan | 1 | 16 | 19:50:27.520323 | 5.9e-05 | | scan data from temp table
383 | 2 | 3 | 1 | | 12811 | project | 1 | | 19:50:27.520323 | 5.9e-05 | |
383 | 2 | 3 | 2 | | 12811 | project | 1 | | 19:50:27.520323 | 5.9e-05 | |
383 | 2 | 3 | 3 | | 12811 | return | 1 | 14 | 19:50:27.520323 | 5.9e-05 | |

The start and end times of the first segment are the timings produced by the
benchmark.

As you can see, only a single slice on a single node participates in the disk read.

Disk (read and write)
Ideally, a benchmark would be provided for reading disk and a benchmark would
be provided for writing disk.

As far as I can make out, it is impossible to produce a query which writes to disk
without first reading from disk; a pure write benchmark cannot be produced.

When considering the timings then from this benchmark, reference must be
made to the disk (read) benchmark, to give a feeling for how much of the time
taken is being consumed by the read part of this benchmark.

The benchmark creates an empty destination table identical to the source table,
where the benchmark query inserts the contents of the source table into the
destination table. This is a single query, but where every slice is inserting rows

9

which are distributed to it, to another table which also distributes those rows
to it, no network traffic occurs. All work is local.

The benchmark DDL and SQL;

create table destination
(
column_1 int8 not null encode raw distkey

)
diststyle key;

insert into
destination(column_1)

select
column_1

from
source;

The step-plan of the benchmark;
qid | stream | segment | step | node_id | slice_id | step_type | rows | bytes | seg_start_time | seg_duration | schematable_name | notes

-----+--------+---------+------+---------+----------+-----------+----------+-----------+-----------------+--------------+------------------+---
369 | 0 | 0 | 0 | 0 | 0 | scan | 33534464 | 536551424 | 19:50:15.708894 | 4.942746 | public.source | scan data from user table
369 | 0 | 0 | 0 | 0 | 1 | scan | 0 | 0 | 19:50:15.708894 | 0.000584 | public.source | scan data from user table
369 | 0 | 0 | 0 | 1 | 2 | scan | 33534464 | 536551424 | 19:50:15.710429 | 4.551398 | public.source | scan data from user table
369 | 0 | 0 | 0 | 1 | 3 | scan | 0 | 0 | 19:50:15.710083 | 0.000453 | public.source | scan data from user table
369 | 0 | 0 | 1 | 0 | 0 | project | 33534464 | | 19:50:15.708894 | 4.942746 | |
369 | 0 | 0 | 1 | 0 | 1 | project | 0 | | 19:50:15.708894 | 0.000584 | |
369 | 0 | 0 | 1 | 1 | 2 | project | 33534464 | | 19:50:15.710429 | 4.551398 | |
369 | 0 | 0 | 1 | 1 | 3 | project | 0 | | 19:50:15.710083 | 0.000453 | |
369 | 0 | 0 | 2 | 0 | 0 | project | 33534464 | | 19:50:15.708894 | 4.942746 | |
369 | 0 | 0 | 2 | 0 | 1 | project | 0 | | 19:50:15.708894 | 0.000584 | |
369 | 0 | 0 | 2 | 1 | 2 | project | 33534464 | | 19:50:15.710429 | 4.551398 | |
369 | 0 | 0 | 2 | 1 | 3 | project | 0 | | 19:50:15.710083 | 0.000453 | |
369 | 0 | 0 | 4 | 0 | 0 | project | 33534464 | | 19:50:15.708894 | 4.942746 | |
369 | 0 | 0 | 4 | 0 | 1 | project | 0 | | 19:50:15.708894 | 0.000584 | |
369 | 0 | 0 | 4 | 1 | 2 | project | 33534464 | | 19:50:15.710429 | 4.551398 | |
369 | 0 | 0 | 4 | 1 | 3 | project | 0 | | 19:50:15.710083 | 0.000453 | |
369 | 0 | 0 | 5 | 0 | 0 | insert | 33534464 | | 19:50:15.708894 | 4.942746 | |
369 | 0 | 0 | 5 | 0 | 1 | insert | 0 | | 19:50:15.708894 | 0.000584 | |
369 | 0 | 0 | 5 | 1 | 2 | insert | 33534464 | | 19:50:15.710429 | 4.551398 | |
369 | 0 | 0 | 5 | 1 | 3 | insert | 0 | | 19:50:15.710083 | 0.000453 | |
369 | 0 | 0 | 6 | 0 | 0 | aggregate | 1 | 8 | 19:50:15.708894 | 4.942746 | | ungrouped, scalar aggregation in memory
369 | 0 | 0 | 6 | 0 | 1 | aggregate | 1 | 8 | 19:50:15.708894 | 0.000584 | | ungrouped, scalar aggregation in memory
369 | 0 | 0 | 6 | 1 | 2 | aggregate | 1 | 8 | 19:50:15.710429 | 4.551398 | | ungrouped, scalar aggregation in memory
369 | 0 | 0 | 6 | 1 | 3 | aggregate | 1 | 8 | 19:50:15.710083 | 0.000453 | | ungrouped, scalar aggregation in memory
369 | 1 | 1 | 0 | 0 | 0 | scan | 1 | 8 | 19:50:20.699767 | 0.000111 | | scan data from temp table
369 | 1 | 1 | 0 | 0 | 1 | scan | 1 | 8 | 19:50:20.700102 | 9.9e-05 | | scan data from temp table
369 | 1 | 1 | 0 | 1 | 2 | scan | 1 | 8 | 19:50:20.665446 | 0.001381 | | scan data from temp table
369 | 1 | 1 | 0 | 1 | 3 | scan | 1 | 8 | 19:50:20.666812 | 8.8e-05 | | scan data from temp table
369 | 1 | 1 | 1 | 0 | 0 | return | 1 | 8 | 19:50:20.699767 | 0.000111 | |
369 | 1 | 1 | 1 | 0 | 1 | return | 1 | 8 | 19:50:20.700102 | 9.9e-05 | |
369 | 1 | 1 | 1 | 1 | 2 | return | 1 | 8 | 19:50:20.665446 | 0.001381 | |
369 | 1 | 1 | 1 | 1 | 3 | return | 1 | 8 | 19:50:20.666812 | 8.8e-05 | |
369 | 1 | 2 | 0 | | 12813 | scan | 4 | 32 | 19:50:20.662658 | 0.037684 | | scan data from network to temp table
369 | 1 | 2 | 1 | | 12813 | aggregate | 1 | 16 | 19:50:20.662658 | 0.037684 | | ungrouped, scalar aggregation in memory
369 | 2 | 3 | 0 | | 12813 | scan | 1 | 16 | 19:50:20.701237 | 4.4e-05 | | scan data from temp table
369 | 2 | 3 | 1 | | 12813 | return | 0 | 0 | 19:50:20.701237 | 4.4e-05 | |

The start and end times of the first segment are the timings produced by the
benchmark.

The first segment begins with the scan and finishes with the aggregate which
is used by Redshift to compute the number of inserted rows (and is, as we see
from the notes column, in memory and so will not distort the time taken for
the query, which is massively dominated by disk I/O).

You will note segment 0 is missing step 3. You will in the next benchmark notice
two steps are missing from its query plan.

I manually examined all the low-level STL_* views/tables used to produce the
step-plan, and they were all correct, recording what is seen here, no more and
no less. I then checked for any new, extra low-level STL_* views/tables, in

10

the system table explorer, there are none. I then examined SVL_QUERY_REPORT,
the completely broken (in a tremendous blunder, is has no column for stream,
so you can never order the rows correctly - clearly, whoever made this view
never used it, nor was checked by anyone using it for real) Redshift system-
tables’ equivalent of a step-plan view; it too is missing the steps my view, which
creates the step-plans used in this document, is missing.

So, what’s going on?

Well, either step numbers are and without warning no longer contiguous, or
logging is now broken and failing to log some steps, or new step types have been
introduced, but without a system table for logging.

Every single one of these options paints the dev team in a bad light, the only
difference being some are worse than others.

Not being able to see all step-types would be the most catastrophic outcome, as
it would no longer be possible to actually know what how a query is working.

Moving on, we see one slice per node is being benchmarked.

Note the slice ID 12811 (which varies a little) is the leader node. This used
to be 6411, but it’s changed moderately recently and is now not actually a
fixed number, just to make reading and using the system tables that bit more
awkward.

Network
Network benchmark as with disk write proved impossible, because I could find
no way to separate a networking step (broadcast, distribute or return) from
a scan.

This benchmark then has a query which in its first segment reads all the rows
on one slice per node, and then emits the rows being read to one slice on
another node. The sender and receiver nodes are different nodes, and the sender
only sends and the receiver only receives. As such, unlike the disk test (where
each node produces one benchmark), here we need two nodes to produce one
benchmark.

As with the disk (read and write) benchmark, reference must be made to the
disk (read) benchmark, to give a feeling for how much of the time taken is being
consumed by the read part of this benchmark.

The benchmark DDL and SQL;

create table destination
(
column_1 int8 not null encode raw distkey

)
diststyle key;

insert into
destination(column_1)

select
case

11

https://www.redshift-observatory.ch/system_table_explorer/index.html
https://docs.aws.amazon.com/redshift/latest/dg/r_SVL_QUERY_REPORT.html

when 5 then 2
end as column_1

from
source

where
column_1 in (5);

The code determines, for each slice, a value which will distribute to that slice.

The insert uses a case to convert the distribution value for the source slice
(which is on one node), to that of the destination slice (which is another node),
and so allows in a single insert for all node pairs to produce a benchmark.

The step-plan of the benchmark;
qid | stream | segment | step | node_id | slice_id | step_type | rows | bytes | seg_start_time | seg_duration | schematable_name | notes

-----+--------+---------+------+---------+----------+------------+----------+-----------+-----------------+--------------+------------------+---
404 | 0 | 0 | 0 | 0 | 0 | scan | 33534464 | 536551424 | 19:51:02.939158 | 5.199308 | public.source | scan data from user table
404 | 0 | 0 | 0 | 0 | 1 | scan | 0 | 0 | 19:51:02.939158 | 0.00044 | public.source | scan data from user table
404 | 0 | 0 | 0 | 1 | 2 | scan | 0 | 0 | 19:51:02.939497 | 0.000585 | public.source | scan data from user table
404 | 0 | 0 | 0 | 1 | 3 | scan | 0 | 0 | 19:51:02.939511 | 0.000571 | public.source | scan data from user table
404 | 0 | 0 | 1 | 0 | 0 | project | 33534464 | | 19:51:02.939158 | 5.199308 | |
404 | 0 | 0 | 1 | 0 | 1 | project | 0 | | 19:51:02.939158 | 0.00044 | |
404 | 0 | 0 | 1 | 1 | 2 | project | 0 | | 19:51:02.939497 | 0.000585 | |
404 | 0 | 0 | 1 | 1 | 3 | project | 0 | | 19:51:02.939511 | 0.000571 | |
404 | 0 | 0 | 2 | 0 | 0 | project | 33534464 | | 19:51:02.939158 | 5.199308 | |
404 | 0 | 0 | 2 | 0 | 1 | project | 0 | | 19:51:02.939158 | 0.00044 | |
404 | 0 | 0 | 2 | 1 | 2 | project | 0 | | 19:51:02.939497 | 0.000585 | |
404 | 0 | 0 | 2 | 1 | 3 | project | 0 | | 19:51:02.939511 | 0.000571 | |
404 | 0 | 0 | 5 | 0 | 0 | distribute | 33534464 | 268269024 | 19:51:02.939158 | 5.199308 | |
404 | 0 | 0 | 5 | 0 | 1 | distribute | 0 | 0 | 19:51:02.939158 | 0.00044 | |
404 | 0 | 0 | 5 | 1 | 2 | distribute | 0 | 0 | 19:51:02.939497 | 0.000585 | |
404 | 0 | 0 | 5 | 1 | 3 | distribute | 0 | 0 | 19:51:02.939511 | 0.000571 | |
404 | 0 | 1 | 0 | 0 | 0 | scan | 0 | 0 | 19:51:02.937737 | 5.201228 | | scan data from network to temp table
404 | 0 | 1 | 0 | 0 | 1 | scan | 0 | 0 | 19:51:02.937737 | 5.201228 | | scan data from network to temp table
404 | 0 | 1 | 0 | 1 | 2 | scan | 33534464 | 268275712 | 19:51:02.938155 | 5.792375 | | scan data from network to temp table
404 | 0 | 1 | 0 | 1 | 3 | scan | 0 | 0 | 19:51:02.938162 | 5.202014 | | scan data from network to temp table
404 | 0 | 1 | 1 | 0 | 0 | project | 0 | | 19:51:02.937737 | 5.201228 | |
404 | 0 | 1 | 1 | 0 | 1 | project | 0 | | 19:51:02.937737 | 5.201228 | |
404 | 0 | 1 | 1 | 1 | 2 | project | 33534464 | | 19:51:02.938155 | 5.792375 | |
404 | 0 | 1 | 1 | 1 | 3 | project | 0 | | 19:51:02.938162 | 5.202014 | |
404 | 0 | 1 | 2 | 0 | 0 | insert | 0 | | 19:51:02.937737 | 5.201228 | |
404 | 0 | 1 | 2 | 0 | 1 | insert | 0 | | 19:51:02.937737 | 5.201228 | |
404 | 0 | 1 | 2 | 1 | 2 | insert | 33534464 | | 19:51:02.938155 | 5.792375 | |
404 | 0 | 1 | 2 | 1 | 3 | insert | 0 | | 19:51:02.938162 | 5.202014 | |
404 | 0 | 1 | 3 | 0 | 0 | aggregate | 1 | 8 | 19:51:02.937737 | 5.201228 | | ungrouped, scalar aggregation in memory
404 | 0 | 1 | 3 | 0 | 1 | aggregate | 1 | 8 | 19:51:02.937737 | 5.201228 | | ungrouped, scalar aggregation in memory
404 | 0 | 1 | 3 | 1 | 2 | aggregate | 1 | 8 | 19:51:02.938155 | 5.792375 | | ungrouped, scalar aggregation in memory
404 | 0 | 1 | 3 | 1 | 3 | aggregate | 1 | 8 | 19:51:02.938162 | 5.202014 | | ungrouped, scalar aggregation in memory
404 | 1 | 2 | 0 | 0 | 0 | scan | 1 | 8 | 19:51:08.742505 | 0.000178 | | scan data from temp table
404 | 1 | 2 | 0 | 0 | 1 | scan | 1 | 8 | 19:51:08.744217 | 0.000101 | | scan data from temp table
404 | 1 | 2 | 0 | 1 | 2 | scan | 1 | 8 | 19:51:08.789994 | 8.3e-05 | | scan data from temp table
404 | 1 | 2 | 0 | 1 | 3 | scan | 1 | 8 | 19:51:08.789994 | 0.000113 | | scan data from temp table
404 | 1 | 2 | 1 | 0 | 0 | return | 1 | 8 | 19:51:08.742505 | 0.000178 | |
404 | 1 | 2 | 1 | 0 | 1 | return | 1 | 8 | 19:51:08.744217 | 0.000101 | |
404 | 1 | 2 | 1 | 1 | 2 | return | 1 | 8 | 19:51:08.789994 | 8.3e-05 | |
404 | 1 | 2 | 1 | 1 | 3 | return | 1 | 8 | 19:51:08.789994 | 0.000113 | |
404 | 1 | 3 | 0 | | 12813 | scan | 4 | 32 | 19:51:08.74055 | 0.049247 | | scan data from network to temp table
404 | 1 | 3 | 1 | | 12813 | aggregate | 1 | 16 | 19:51:08.74055 | 0.049247 | | ungrouped, scalar aggregation in memory
404 | 2 | 4 | 0 | | 12813 | scan | 1 | 16 | 19:51:08.791234 | 4.7e-05 | | scan data from temp table
404 | 2 | 4 | 1 | | 12813 | return | 0 | 0 | 19:51:08.791234 | 4.7e-05 | |

The start and end times of the first segment are the timings produced by the
benchmark.

The first segment begins with the scan and finishes with the distribute.

You will note here two steps are missing, steps 3 and 4 in segment 0.

Finally, if you look at the first segment, all its work is on slice 0 of node 0,
but then after the distribute work moves to slice 2 of node 1, which is the
destination node.

Processor
As ever, the aim and the difficulty is producing a benchmark which tests only
the processor.

12

Now, the leader node is identical in hardware to the worker nodes.

A processor test which runs only on the leader node tells us perfectly well the
performance of the node type.

The leader-node, being descending from Postgres, provides a wide range of
functionality not available on the worker nodes and this includes the function
generate_series(), which is used to produce rows.

The benchmark code then uses generate_series() to produce in a subquery a
large number of rows, with the outer query performing a count(*) and returning
this total (thus very nearly eliminating network traffic).

This is to my eye a pure processor test.

I think it will be single-threaded, and so not test the extent to which the pro-
cessor supports multiple concurrent threads in hardware, and so is providing a
direct comparison between single-thread performance across node types.

The benchmark code;

select
-1 as node_id,
-1 as slice_id,
sysdate::timestamp as transaction_start_time_utc,
timeofday()::varchar::timestamp as query_end_time_utc,
count(*) as number_rows

from
(
select
generate_series(0, power(2,23)::int8, 1)

) as gs;

The inner query does all the work. The outer query provide timestamps for the
start of the transaction and the time the single output row was emitted. The
node_id and slice_id are set to -1 to signify the leader-node.

A step-plan cannot be provided as the benchmark runs wholly on the leader-
node.

13

Results

These results are available on-line, where they will intermittently be updated,
to track performance over time.

The results here as for the first complete benchmark run, dated 2022-01-24.

All results are times in seconds, with shorter times meaning higher performance.

See Appendix A for the Python pprint dump of the results dictionaries (one
per region, per node type).

af-south-1

node disk(r) disk(rw) network processor
dc2.large 0.72/0.01 14.83/1.32 12.87/0.09 3.55/0.00
ds2.xlarge 0.14/0.00 4.53/0.02 5.63/0.05 3.46/0.02

ap-east-1

node disk(r) disk(rw) network processor
dc2.large 0.72/0.00 13.25/0.07 12.82/0.04 3.61/0.04
ds2.xlarge 0.14/0.00 4.58/0.02 5.38/0.06 3.44/0.01
ra3.xlplus 0.10/0.00 3.83/0.01 3.26/0.04 2.69/0.00
dc2.8xlarge 0.15/0.00 4.61/0.02 3.62/0.00 3.51/0.00
ds2.8xlarge 0.14/0.00 4.56/0.01 3.75/0.01 3.81/0.01
ra3.4xlarge 0.10/0.00 3.80/0.02 2.96/0.01 2.73/0.01
ra3.16xlarge 0.10/0.00 3.67/0.01 2.93/0.00 2.53/0.00

ap-northeast-1

node disk(r) disk(rw) network processor
dc2.large 0.15/0.00 4.74/0.18 5.29/0.06 3.66/0.12
ds2.xlarge 0.14/0.00 4.48/0.03 5.30/0.07 3.44/0.01
ra3.xlplus 0.11/0.00 3.85/0.02 3.23/0.03 2.71/0.00

14

https://www.redshift-observatory.ch/cross_region_benchmarks/index.html

node disk(r) disk(rw) network processor

ap-northeast-2

node disk(r) disk(rw) network processor
dc2.large 0.15/0.00 4.61/0.09 8.26/0.08 3.57/0.03
ds2.xlarge 0.14/0.00 4.59/0.01 6.98/0.02 3.42/0.01
ra3.xlplus 0.10/0.00 3.88/0.03 3.17/0.02 2.78/0.01

ap-northeast-3

node disk(r) disk(rw) network processor
dc2.large 0.15/0.00 4.67/0.11 7.19/0.07 3.53/0.07
ds2.xlarge 0.14/0.00 4.54/0.02 5.74/0.03 3.44/0.01

ap-south-1

node disk(r) disk(rw) network processor
dc2.large 0.15/0.00 4.44/0.08 5.04/0.00 3.67/0.03
ds2.xlarge 0.14/0.00 4.39/0.03 5.12/0.03 3.52/0.01
ra3.xlplus 0.11/0.00 3.62/0.05 3.00/0.02 2.79/0.01

ap-southeast-1

node disk(r) disk(rw) network processor
dc2.large 0.15/0.00 5.25/1.35 5.02/0.02 3.55/0.03
ds2.xlarge 0.14/0.00 4.58/0.04 5.74/0.00 3.48/0.03
ra3.xlplus 0.10/0.00 3.87/0.01 3.37/0.08 2.63/0.01

ap-southeast-2

node disk(r) disk(rw) network processor
dc2.large 0.16/0.00 4.67/0.12 5.25/0.06 3.51/0.01
ds2.xlarge 0.14/0.00 4.61/0.05 5.83/0.04 3.43/0.02
ra3.xlplus 0.11/0.00 3.92/0.03 3.31/0.02 2.76/0.00

15

ap-southeast-3

node disk(r) disk(rw) network processor
dc2.large 0.73/0.00 13.33/0.20 13.12/0.01 3.51/0.01

ca-central-1

node disk(r) disk(rw) network processor
dc2.large 0.15/0.00 4.78/0.30 5.28/0.10 3.55/0.01
ds2.xlarge 0.14/0.00 4.62/0.04 5.76/0.03 3.41/0.01
ra3.xlplus 0.11/0.00 3.91/0.04 3.26/0.07 2.78/0.04

cn-north-1
No data.

cn-northwest-1
No data.

eu-central-1

node disk(r) disk(rw) network processor
dc2.large 0.15/0.00 4.46/0.08 4.99/0.01 3.61/0.02
ds2.xlarge 0.14/0.00 4.38/0.02 5.04/0.02 3.54/0.00
ra3.xlplus 0.10/0.00 3.70/0.02 3.12/0.02 2.88/0.07

eu-north-1

node disk(r) disk(rw) network processor
dc2.large 0.15/0.00 4.62/0.09 5.16/0.17 3.57/0.02
ds2.xlarge 0.14/0.00 4.58/0.09 5.59/0.04 3.54/0.18
ra3.xlplus 0.10/0.00 3.85/0.01 3.24/0.03 2.69/0.01

eu-south-1

node disk(r) disk(rw) network processor
dc2.large 0.73/0.01 13.38/0.24 13.02/0.07 3.52/0.02

16

node disk(r) disk(rw) network processor
ds2.xlarge 0.14/0.00 4.54/0.01 5.47/0.02 3.42/0.00

eu-west-1

node disk(r) disk(rw) network processor
dc2.large 0.15/0.00 4.65/0.11 5.15/0.06 3.63/0.02
ds2.xlarge 0.14/0.00 4.49/0.04 4.99/0.07 3.55/0.20
ra3.xlplus 0.11/0.00 3.87/0.02 3.18/0.06 2.86/0.13

eu-west-2

node disk(r) disk(rw) network processor
dc2.large 0.15/0.00 4.78/0.28 5.20/0.04 3.47/0.01
ds2.xlarge 0.14/0.00 4.55/0.05 6.09/0.03 3.47/0.00
ra3.xlplus 0.11/0.00 3.92/0.04 3.25/0.01 2.86/0.14

eu-west-3

node disk(r) disk(rw) network processor
dc2.large 0.15/0.00 4.91/0.39 5.17/0.07 3.54/0.03
ds2.xlarge 0.14/0.00 4.59/0.07 5.71/0.04 3.37/0.01
ra3.xlplus 0.10/0.00 3.92/0.02 3.23/0.03 2.78/0.07

me-south-1

node disk(r) disk(rw) network processor
dc2.large 0.71/0.00 13.21/0.07 12.69/0.03 3.58/0.01
ds2.xlarge 0.14/0.00 4.56/0.03 5.66/0.01 3.42/0.01

sa-east-1

node disk(r) disk(rw) network processor
dc2.large 0.15/0.00 4.62/0.10 5.12/0.01 3.62/0.09
ds2.xlarge 0.14/0.00 4.62/0.09 5.62/0.03 3.40/0.02
ra3.xlplus 0.11/0.00 3.88/0.02 3.23/0.02 2.67/0.00

17

us-east-1

node disk(r) disk(rw) network processor
dc2.large 0.14/0.00 4.60/0.12 7.04/0.21 3.48/0.01
ds2.xlarge 0.14/0.00 4.52/0.04 7.48/0.05 3.40/0.00
ra3.xlplus 0.11/0.00 3.81/0.05 3.08/0.04 2.74/0.00
dc2.8xlarge 0.14/0.00 4.59/0.03 3.47/0.01 3.43/0.00
ds2.8xlarge 0.14/0.00 4.53/0.04 3.66/0.09 3.33/0.00
ra3.4xlarge 0.11/0.00 3.87/0.04 3.05/0.04 2.73/0.00
ra3.16xlarge 0.11/0.00 3.58/0.03 2.83/0.01 2.50/0.00

us-east-2

node disk(r) disk(rw) network processor
dc2.large 0.15/0.00 4.43/0.03 5.40/0.12 3.65/0.00
ds2.xlarge 0.14/0.00 4.45/0.08 5.03/0.07 3.54/0.01
ra3.xlplus 0.10/0.00 3.65/0.04 3.15/0.03 2.87/0.06

us-gov-east-1
No data.

us-gov-secret-1
No data.

us-gov-topsecret-1
No data.

us-gov-topsecret-2
No data.

us-gov-west-1
No data.

us-west-1

18

node disk(r) disk(rw) network processor
dc2.large 0.15/0.00 4.44/0.04 5.36/0.01 3.65/0.00
ds2.xlarge 0.14/0.00 4.43/0.04 6.04/0.10 3.56/0.02
ra3.xlplus 0.10/0.00 3.57/0.01 3.08/0.03 2.74/0.02

us-west-2

node disk(r) disk(rw) network processor
dc2.large 0.15/0.00 4.63/0.07 5.20/0.03 3.53/0.03
ds2.xlarge 0.14/0.00 4.47/0.03 5.28/0.09 3.55/0.02
ra3.xlplus 0.11/0.00 3.86/0.03 3.16/0.02 2.77/0.00

19

Discussion

The result which most immediately catches the eye is that in certain regions,
the dc2.large node type is taking between two and five times as long to run
benchmarks as in other regions.

The affected regions are;

region
af-south-1
ap-east-1
ap-southeast-3
eu-south-1
me-south-1

I normally test only the small node types, but I tested the large node types in
two regions, so there would be at least some benchmarks for them, and I chose
one region with slow dc2.large nodes, and one without.

The benchmarks for a typical affected region (ap-east-1);

node disk(r) disk(rw) network processor
dc2.large 0.72/0.00 13.25/0.07 12.82/0.04 3.61/0.04
ds2.xlarge 0.14/0.00 4.58/0.02 5.38/0.06 3.44/0.01
ra3.xlplus 0.10/0.00 3.83/0.01 3.26/0.04 2.69/0.00
dc2.8xlarge 0.15/0.00 4.61/0.02 3.62/0.00 3.51/0.00
ds2.8xlarge 0.14/0.00 4.56/0.01 3.75/0.01 3.81/0.01
ra3.4xlarge 0.10/0.00 3.80/0.02 2.96/0.01 2.73/0.01
ra3.16xlarge 0.10/0.00 3.67/0.01 2.93/0.00 2.53/0.00

And these for us-east-1, a normal region;

node disk(r) disk(rw) network processor
dc2.large 0.14/0.00 4.60/0.12 7.04/0.21 3.48/0.01
ds2.xlarge 0.14/0.00 4.52/0.04 7.48/0.05 3.40/0.00
ra3.xlplus 0.11/0.00 3.81/0.05 3.08/0.04 2.74/0.00
dc2.8xlarge 0.14/0.00 4.59/0.03 3.47/0.01 3.43/0.00

20

node disk(r) disk(rw) network processor
ds2.8xlarge 0.14/0.00 4.53/0.04 3.66/0.09 3.33/0.00
ra3.4xlarge 0.11/0.00 3.87/0.04 3.05/0.04 2.73/0.00
ra3.16xlarge 0.11/0.00 3.58/0.03 2.83/0.01 2.50/0.00

Only dc2.large is affected. Note the processor benchmark is not affected.

I have no idea why this is so. It is not obviously a property of the region, as
other node types are unaffected.

I have no idea if the Redshift team are aware of this difference in performance,
but it surely seems unthinkable they would not know; this would require a lack
of performance telemetry, and I have the impression that Redshift clusters are
up to their little electronic ears in telemetry.

Aside from this, Redshift node types appear, within the resolving power of the
benchmarks, to be identical across regions.

As to how this is so; a region - a vast data center - is an enormous number
of servers. At the time of writing AWS has about twenty-five data centers. I
cannot imagine for one second every data center is going to be bang up to date
with the latest hardware - it’s simply impossible logistically, and hardly makes
sense financially; you do not replace a server the moment the next incrementally
improved server comes out.

However, AWS offer virtual servers and so the specifications of the virtual server
are defined in software and, where the specifications are given in high-level terms
- the number of physical processors, the amount of memory, disk space, etc - they
gloss over the differences in hardware between regions.

In this way, virtual servers, despite the underlying hardware difference, turn
out to be very similar; although it may well be some servers are running on
more modern processors, or on faster memory, the impact of these differences is
normally is much smaller than the impact of the high-level specifications.

I thought it might also be useful and interesting here, since we are after all now
looking at node type performance, to list, ordered by price, the cost of each
node type in USD per hour across regions, so you can see where you stand with
your choice of region.

This data is obtained via the pricing API in boto3 and reflects prices at the
time of writing (the timestamp column is the timestamp the price is valid from).

For the dc2.large table, there is an additional column, note, where I indicate
the five slow regions.

Table 26: dc2.large

node type region price note
dc2.large sa-east-1 0.4
dc2.large ap-east-1 0.363 slow
dc2.large af-south-1 0.357 slow

21

node type region price note
dc2.large ap-southeast-1 0.33
dc2.large ap-southeast-2 0.33
dc2.large ap-southeast-3 0.33 slow
dc2.large me-south-1 0.33 slow
dc2.large us-west-1 0.33
dc2.large eu-central-1 0.324
dc2.large eu-west-2 0.32
dc2.large eu-west-3 0.32
dc2.large ap-south-1 0.315
dc2.large eu-south-1 0.315 slow
dc2.large ap-northeast-1 0.314
dc2.large ap-northeast-3 0.314
dc2.large ap-northeast-2 0.3
dc2.large eu-west-1 0.3
dc2.large us-gov-east-1 0.3
dc2.large us-gov-west-1 0.3
dc2.large eu-north-1 0.285
dc2.large ca-central-1 0.275
dc2.large us-east-1 0.25
dc2.large us-east-2 0.25
dc2.large us-west-2 0.25
dc2.large cn-north-1 no data
dc2.large cn-northwest-1 no data
dc2.large us-gov-secret-1 no data
dc2.large us-gov-topsecret-1 no data
dc2.large us-gov-topsecret-2 no data

Table 27: ds2.xlarge

node type region price
ds2.xlarge ap-east-1 1.375
ds2.xlarge sa-east-1 1.36
ds2.xlarge ap-southeast-1 1.25
ds2.xlarge ap-southeast-2 1.25
ds2.xlarge us-west-1 1.25
ds2.xlarge ap-northeast-1 1.19
ds2.xlarge ap-northeast-3 1.19
ds2.xlarge ap-south-1 1.19
ds2.xlarge ap-northeast-2 1.15
ds2.xlarge af-south-1 1.1305
ds2.xlarge me-south-1 1.05
ds2.xlarge eu-central-1 1.026
ds2.xlarge us-gov-east-1 1.02
ds2.xlarge us-gov-west-1 1.02
ds2.xlarge eu-west-2 1
ds2.xlarge eu-west-3 1

22

node type region price
ds2.xlarge eu-south-1 0.9975
ds2.xlarge eu-west-1 0.95
ds2.xlarge ca-central-1 0.935
ds2.xlarge eu-north-1 0.9025
ds2.xlarge us-east-1 0.85
ds2.xlarge us-east-2 0.85
ds2.xlarge us-west-2 0.85
ds2.xlarge ap-southeast-3 no data
ds2.xlarge cn-north-1 no data
ds2.xlarge cn-northwest-1 no data
ds2.xlarge us-gov-secret-1 no data
ds2.xlarge us-gov-topsecret-1 no data
ds2.xlarge us-gov-topsecret-2 no data

Table 28: ra3.xlplus

node type region price
ra3.xlplus sa-east-1 1.731
ra3.xlplus ap-southeast-1 1.303
ra3.xlplus ap-southeast-2 1.303
ra3.xlplus eu-central-1 1.298
ra3.xlplus ap-northeast-1 1.278
ra3.xlplus ap-northeast-2 1.278
ra3.xlplus eu-west-3 1.265
ra3.xlplus eu-west-2 1.264
ra3.xlplus ap-south-1 1.235
ra3.xlplus ca-central-1 1.202
ra3.xlplus eu-west-1 1.202
ra3.xlplus us-west-1 1.202
ra3.xlplus eu-north-1 1.139
ra3.xlplus ap-east-1 1.086
ra3.xlplus us-east-1 1.086
ra3.xlplus us-east-2 1.086
ra3.xlplus us-gov-east-1 1.086
ra3.xlplus us-gov-west-1 1.086
ra3.xlplus us-west-2 1.086
ra3.xlplus af-south-1 no data
ra3.xlplus ap-northeast-3 no data
ra3.xlplus ap-southeast-3 no data
ra3.xlplus cn-north-1 no data
ra3.xlplus cn-northwest-1 no data
ra3.xlplus eu-south-1 no data
ra3.xlplus me-south-1 no data
ra3.xlplus us-gov-secret-1 no data
ra3.xlplus us-gov-topsecret-1 no data
ra3.xlplus us-gov-topsecret-2 no data

23

Table 29: dc2.8xlarge

node type region price
dc2.8xlarge sa-east-1 7.68
dc2.8xlarge ap-east-1 7.04
dc2.8xlarge af-south-1 6.664
dc2.8xlarge ap-southeast-1 6.4
dc2.8xlarge ap-southeast-2 6.4
dc2.8xlarge ap-southeast-3 6.4
dc2.8xlarge us-west-1 6.4
dc2.8xlarge me-south-1 6.16
dc2.8xlarge ap-south-1 6.1
dc2.8xlarge ap-northeast-1 6.095
dc2.8xlarge ap-northeast-3 6.095
dc2.8xlarge eu-central-1 6.048
dc2.8xlarge eu-south-1 5.88
dc2.8xlarge eu-west-2 5.88
dc2.8xlarge eu-west-3 5.88
dc2.8xlarge ap-northeast-2 5.8
dc2.8xlarge us-gov-east-1 5.76
dc2.8xlarge us-gov-west-1 5.76
dc2.8xlarge eu-west-1 5.6
dc2.8xlarge eu-north-1 5.32
dc2.8xlarge ca-central-1 5.28
dc2.8xlarge us-east-1 4.8
dc2.8xlarge us-east-2 4.8
dc2.8xlarge us-west-2 4.8
dc2.8xlarge cn-north-1 no data
dc2.8xlarge cn-northwest-1 no data
dc2.8xlarge us-gov-secret-1 no data
dc2.8xlarge us-gov-topsecret-1 no data
dc2.8xlarge us-gov-topsecret-2 no data

Table 30: ds2.8xlarge

node type region price
ds2.8xlarge ap-east-1 11
ds2.8xlarge sa-east-1 10.88
ds2.8xlarge ap-southeast-1 10
ds2.8xlarge ap-southeast-2 10
ds2.8xlarge us-west-1 10
ds2.8xlarge ap-northeast-1 9.52
ds2.8xlarge ap-northeast-3 9.52
ds2.8xlarge ap-south-1 9.5
ds2.8xlarge ap-northeast-2 9.05
ds2.8xlarge af-south-1 9.044
ds2.8xlarge me-south-1 8.36

24

node type region price
ds2.8xlarge eu-central-1 8.208
ds2.8xlarge us-gov-east-1 8.16
ds2.8xlarge us-gov-west-1 8.16
ds2.8xlarge eu-south-1 7.98
ds2.8xlarge eu-west-2 7.98
ds2.8xlarge eu-west-3 7.98
ds2.8xlarge eu-west-1 7.6
ds2.8xlarge ca-central-1 7.48
ds2.8xlarge eu-north-1 7.22
ds2.8xlarge us-east-1 6.8
ds2.8xlarge us-east-2 6.8
ds2.8xlarge us-west-2 6.8
ds2.8xlarge ap-southeast-3 no data
ds2.8xlarge cn-north-1 no data
ds2.8xlarge cn-northwest-1 no data
ds2.8xlarge us-gov-secret-1 no data
ds2.8xlarge us-gov-topsecret-1 no data
ds2.8xlarge us-gov-topsecret-2 no data

Table 31: ra3.4xlarge

node type region price
ra3.4xlarge sa-east-1 5.195
ra3.4xlarge ap-southeast-1 3.909
ra3.4xlarge ap-southeast-2 3.909
ra3.4xlarge ap-southeast-3 3.909
ra3.4xlarge eu-central-1 3.894
ra3.4xlarge ap-northeast-1 3.836
ra3.4xlarge ap-northeast-2 3.836
ra3.4xlarge eu-west-3 3.795
ra3.4xlarge eu-west-2 3.793
ra3.4xlarge ap-south-1 3.706
ra3.4xlarge ca-central-1 3.607
ra3.4xlarge eu-west-1 3.606
ra3.4xlarge us-west-1 3.606
ra3.4xlarge eu-north-1 3.418
ra3.4xlarge ap-east-1 3.26
ra3.4xlarge us-east-1 3.26
ra3.4xlarge us-east-2 3.26
ra3.4xlarge us-gov-east-1 3.26
ra3.4xlarge us-gov-west-1 3.26
ra3.4xlarge us-west-2 3.26
ra3.4xlarge af-south-1 no data
ra3.4xlarge ap-northeast-3 no data
ra3.4xlarge cn-north-1 no data
ra3.4xlarge cn-northwest-1 no data

25

node type region price
ra3.4xlarge eu-south-1 no data
ra3.4xlarge me-south-1 no data
ra3.4xlarge us-gov-secret-1 no data
ra3.4xlarge us-gov-topsecret-1 no data
ra3.4xlarge us-gov-topsecret-2 no data

Table 32: ra3.16xlarge

node type region price
ra3.16xlarge sa-east-1 20.78
ra3.16xlarge ap-southeast-1 15.636
ra3.16xlarge ap-southeast-2 15.636
ra3.16xlarge eu-central-1 15.578
ra3.16xlarge ap-southeast-3 15.363
ra3.16xlarge ap-northeast-1 15.347
ra3.16xlarge ap-northeast-2 15.347
ra3.16xlarge eu-west-3 15.18
ra3.16xlarge eu-west-2 15.174
ra3.16xlarge ap-south-1 14.827
ra3.16xlarge ca-central-1 14.43
ra3.16xlarge eu-west-1 14.424
ra3.16xlarge us-west-1 14.424
ra3.16xlarge eu-north-1 13.675
ra3.16xlarge ap-east-1 13.04
ra3.16xlarge us-east-1 13.04
ra3.16xlarge us-east-2 13.04
ra3.16xlarge us-gov-east-1 13.04
ra3.16xlarge us-gov-west-1 13.04
ra3.16xlarge us-west-2 13.04
ra3.16xlarge af-south-1 no data
ra3.16xlarge ap-northeast-3 no data
ra3.16xlarge cn-north-1 no data
ra3.16xlarge cn-northwest-1 no data
ra3.16xlarge eu-south-1 no data
ra3.16xlarge me-south-1 no data
ra3.16xlarge us-gov-secret-1 no data
ra3.16xlarge us-gov-topsecret-1 no data
ra3.16xlarge us-gov-topsecret-2 no data

26

Conclusions

Within the resolving power of the benchmark suite, Redshift node types
are identical in performance across regions, with the single exception of the
dc2.large node type, which is much slower in five regions; af-south-1,
ap-east-1, ap-southeast-3, eu-south-1, and me-south-1.

27

Unexpected Findings

When you investigate Redshift, there are always unexpected findings.

1. The step-plan for the disk (read) benchmark reveals a missing step, the
step-plan for the network benchmark, two. It’s not clear why this is hap-
pening, but on the face of it, I can no longer fully know what work a query
has done. This would be staggeringly bad; when a cluster has problems,
and I need to figure out what’s happening with a slow query, how can I
do so when the slow step might no longer be present in the system tables?

2. A benchmark run on the three small node types over the twenty-two re-
gions being tested fires up about 60 clusters (not all node types are avail-
able in all regions), which are two worker nodes each, and so about 180
nodes (if we include the leader node). About a hundred of so queries
would then be issued each cluster. I would normally find, with this num-
ber of clusters and this number of queries, that one query, to one cluster,
would hang indefinitely; this happens because a Redshift internal process
(usually the WLM manager) would crash, but this crash would not cancel
the query or disconnect the user, and so from the users point of view, it
looks just like a normal query which is taking a long time to run. For me,
using pyscopg2, I would call execute, and it would simply not return; no
error occurred.

To my thought, this then requires of the Redshift user two things, firstly,
that timeouts need to be set on queries, which is a bit problematic, be-
cause you don’t know how long a query will take to execute, and secondly,
of course, you must structure your code so any single query hanging only
affects the results from that query, and that you can easily re-run that
query. For me, the original benchmark code was structured that all bench-
marks were run, on all nodes on all regions, and then the results returned;
this required all clusters to function correctly. Once I recognized this
problem, the code was structured so that each cluster returned its results
independently of the others, and so when a cluster hung in this way, I had
the results from all the other clusters, and then re-ran the benchmark on
that single cluster.

28

Revision History

v1
• Initial release.

v2
• No content changes; path to image file(s) changed.

v3
• Added “About the Author”. made site name in title a link, and made each

chapter start a new page.
• Updated links to amazonredshiftresearcproject.org to redshiftresearcpro-

ject.org.

v4
• Web-site name changed to “Redshift Observatory”.
• Updated links from redshiftresearcproject.org to redshift-observatory.ch.

29

Appendix A : Raw Data
Dump

The document processing software is having trouble with this appendix, as it is
about 700kb of JSON.

As such, I’ve had to here give a link to the appendix as a separate document,
which is here.

30

https://www.redshift-observatory.ch/white_papers/downloads/cross_region_benchmarks_appendix_a.md

About the Author

I am a C programmer - kernel development, high performance computing, net-
working, data structures and so on.

I read the C. J. Date book, the classic text on relational database theory, and
having learned the principles, wrote a relational database from scratch in C,
which purely by chance set me up quite nicely for what came next, moving into
data engineering in late 2011, when I joined as the back-end engineer two friends
in their startup.

In that startup, I began using Redshift the day it came out, in 2012 (we had
been trying to get into the beta programme).

We were early, heavy users for a year and a half, and I ending up having monthly
one-to-one meetings with one of the Redshift team managers, where one or two
features which are in Redshift today originate from suggestions made in those
meetings, such as the distribution style ALL.

Once that was done, after a couple of years of non-Redshift data engineering
work, I returned to Redshift work, and then in about mid-2018 contracted with
a publisher to write a book about Redshift.

The book was largely written but it became apparent I wanted to do a lot of
things which couldn’t be done with a book - republish on every new Redshift
release, for example - and so in the end I stepped back from the contract and de-
veloped the web-site, where I publish investigation into, and ongoing monitoring
of, Redshift.

So for many years now I’ve been investigating Redshift sub-systems full-time,
one by one, and this site and these investigations are as far as I know the and
the only source of this kind of information about Redshift.

Redshift Cluster Cost Reduction Service
I provide consultancy services for Redshift - advice, design, training, getting
failing systems back on their feet pronto, the usual gamut - but in particular
offer a Redshift cluster cost reduction service, where the fee is and only is one
month of the savings made.

Broadly speaking, to give guidance, savings are expected fall into one of two
categories; either something like 20%, or something like 80%. The former is

31

for systems where the business use case is such that Redshift cannot be oper-
ated correctly, and this outcome requires no fundamental re-engineering work,
the latter is for systems where Redshift can be operated correctly, and usually
requires fundamental re-engineering work (which you may or may not wish to
engage in, despite the cost savings, in which case we’re back to the 20%).

Details and contact information are on the web-site.

32

https://www.redshiftresearchproject.org#page_technicalresources

	Introduction
	Test Method
	Benchmarks
	Disk (read)
	Disk (read and write)
	Network
	Processor

	Results
	af-south-1
	ap-east-1
	ap-northeast-1
	ap-northeast-2
	ap-northeast-3
	ap-south-1
	ap-southeast-1
	ap-southeast-2
	ap-southeast-3
	ca-central-1
	cn-north-1
	cn-northwest-1
	eu-central-1
	eu-north-1
	eu-south-1
	eu-west-1
	eu-west-2
	eu-west-3
	me-south-1
	sa-east-1
	us-east-1
	us-east-2
	us-gov-east-1
	us-gov-secret-1
	us-gov-topsecret-1
	us-gov-topsecret-2
	us-gov-west-1
	us-west-1
	us-west-2

	Discussion
	Conclusions
	Unexpected Findings
	Revision History
	v1
	v2
	v3
	v4

	Appendix A : Raw Data Dump
	About the Author
	Redshift Cluster Cost Reduction Service

