
Introduction to Encodings, and the Raw
Encoding

Max Ganz II @ Redshift Observatory

24th October 2021

https://www.redshift-observatory.ch

Abstract

The official documentation is significantly out of date with regard to which
encodings support which data types. The white paper presents a programmatic
enumeration of encodings and which encodings support which data types, and
determines how many values of each data type can be stored in a single block,
which reveals that the boolean type is 1 bit per value, and that columns which
are NULL (as opposed to NOT NULL) consume an additional 1 bit of store per
value, except for varchar, which consumes an additional 1 byte of store per
value.

Contents

Introduction 2

Test Method 3

Results 4
dc2.large, 2 nodes (1.0.32574) . 4

Enumerated Encodings . 4
Valid Encodings for Data Types 5
Valid Data Types for Encodings 5
raw Encoding . 6

Discussion 9
Valid Encodings for Data Types . 10
Valid Data Types for Encodings . 10

Conclusions 16

Revision History 17
v1 . 17
v2 . 17
v3 . 17

Appendix A : Raw Data Dump 18

About the Author 28
Redshift Cluster Cost Reduction Service 28

1

Introduction

Redshift is a column-store relational database, which means that each column
in a table is stored independently.

It is often the case that the data in a single column has similar characteristics -
for example, it might be all names, or ages, or might be integer values within a
given range; in other words, data which is far from randomly distributed across
the value range for the data type of the column.

This provides an opportunity for unusually effective data compression, as well as
an opportunity to blunder terribly, as Redshift offers a range of data compression
methods (known in the Redshift documentation as “encodings”), most of which
work spectacularly well with and only with data which expresses the suitable
characteristics for that data compression method (and spectacularly badly with
data which lacks those suitable characteristics).

It is then necessary to understand the type of data characteristics suitable for
each of the data compression methods offered by Redshift, as well of course as
the properties, behaviours and limitations of the data compression methods, so
the good choices can be made when selecting data compression for columns.

This document is one in a series, each of which examines one data compression
method offered by Redshift, which here investigates the raw encoding.

(I normally do not work, but currently I am on a full-time contract, so if I
spent the time necessary to produce a single document with all encodings, you
would hear nothing from me for many weeks. Once all the encodings have been
documented, a single document, “Encodings”, will be released.)

2

Test Method

First, the encodings available to Redshift are enumerated by using the function
format_encoding(int4). This function takes an argument between 0 and
255 (despite taking an int4) which is the ID of an encoding, and returns a
string which is the name of the encoding, or the string “unknown”, if the ID
has no matching encoding.

Second, we then enumerate which data types can use which encodings, by ob-
taining a complete list of data types from pg_type, and making a table for
every combination of data type and encoding, and noting which combinations
are permitted and which are not.

(For char and varchar, we use a small selection of variants, where we inde-
pendently vary both the DDL lengths and actual length of the strings. Note
that geometry, hllsketch and super are not investigated, because I’ve not yet
learned about them, so I have only superficial knowledge of how they work, not
enough to investigate them here. When I do, I’ll update this document.)

Third, we then find how many rows of each raw encoded data type fit into a
single block.

3

Results

The results are given here for ease of reference, but they are primarily presented,
piece by piece along with explanation, in the Discussion.

See Appendix A for the Python pprint dump of the results dictionary.

The script used to generated these results in designed to readers to use, and is
available here.

Test duration, excluding server bring-up and shut-down, was 1641 seconds.

dc2.large, 2 nodes (1.0.32574)
Enumerated Encodings

ID Name
0 none
1 bytedict
2 delta
3 lzo
4 runlength
5 delta32k
7 text255
11 globaldict256
12 globaldict64k
13 globaldict4B
15 mostly8
16 mostly16
17 mostly32
18 text32k
19 zstd
20 az64
128 none
131 lzo
133 delta32k
147 zstd
148 az64

4

https://www.redshift-observatory.ch/white_papers/downloads/introduction_to_encodings_and_the_raw_encoding.py

Valid Encodings for Data Types

Data Type Encodings
bool raw, runlength, zstd
bpchar bytedict, lzo, raw, runlength, zstd
char bytedict, lzo, raw, runlength, zstd
date az64, bytedict, delta, delta32k, lzo,

raw, runlength, zstd
float4 bytedict, raw, runlength, zstd
float8 bytedict, raw, runlength, zstd
geometry raw
hllsketch raw
int2 az64, bytedict, delta, lzo, mostly8,

raw, runlength, zstd
int4 az64, bytedict, delta, delta32k, lzo,

mostly16, mostly8, raw, runlength,
zstd

int8 az64, bytedict, delta, delta32k, lzo,
mostly16, mostly32, mostly8, raw,
runlength, zstd

numeric az64, bytedict, delta, delta32k, lzo,
mostly16, mostly32, mostly8, raw,
runlength, zstd

super lzo, raw, zstd
text bytedict, lzo, raw, runlength, text32k,

zstd
time az64, bytedict, delta, delta32k, lzo,

raw, runlength, zstd
timestamp az64, bytedict, delta, delta32k, lzo,

raw, runlength, zstd
timestamptz az64, bytedict, delta, delta32k, lzo,

raw, runlength, zstd
timetz az64, bytedict, delta, delta32k, lzo,

raw, runlength, zstd
varchar bytedict, lzo, raw, runlength, text255,

text32k, zstd

Valid Data Types for Encodings

Encoding Data Types
az64 date, int2, int4, int8, numeric, time,

timestamp, timestamptz, timetz
bytedict bpchar, char, date, float4, float8, int2,

int4, int8, numeric, text, time,
timestamp, timestamptz, timetz,
varchar

5

Encoding Data Types
delta date, int2, int4, int8, numeric, time,

timestamp, timestamptz, timetz
delta32k date, int4, int8, numeric, time,

timestamp, timestamptz, timetz
globaldict256
globaldict4B
globaldict64k
lzo bpchar, char, date, int2, int4, int8,

numeric, super, text, time, timestamp,
timestamptz, timetz, varchar

mostly16 int4, int8, numeric
mostly32 int8, numeric
mostly8 int2, int4, int8, numeric
raw bool, bpchar, char, date, float4, float8,

geometry, hllsketch, int2, int4, int8,
numeric, super, text, time, timestamp,
timestamptz, timetz, varchar

runlength bool, bpchar, char, date, float4,
float8, int2, int4, int8, numeric, text,
time, timestamp, timestamptz,
timetz, varchar

text255 varchar
text32k text, varchar
zstd bool, bpchar, char, date, float4,

float8, int2, int4, int8, numeric, super,
text, time, timestamp, timestamptz,
timetz, varchar

raw Encoding

Data Type Values/Block (NN) Values/Block (N) Diff Notes
boolean 8,387,697 4,193,849 4,193,848
char(0001) 1,048,463 931,967 116,496 one character string
char(0008) 131,051 129,035 2,016 one character string
char(0008) 131,051 129,035 2,016 full length string
char(0064) 16,375 16,343 32 one character string
char(0064) 16,375 16,343 32 full length string
char(4096) 248 248 0 one character string
char(4096) 248 248 0 full length string
date 262,085 254,143 7,942
float4 262,085 254,143 7,942
float8 130,994 128,978 2,016
int2 524,219 493,382 30,837
int4 262,085 254,143 7,942
int8 130,994 128,978 2,016
time 130,994 128,978 2,016

6

Data Type Values/Block (NN) Values/Block (N) Diff Notes
timestamp 130,994 128,978 2,016
timestamptz 130,994 128,978 2,016
timetz 130,994 128,978 2,016
numeric(1,0) 130,994 128,978 2,016
numeric(19,0) 130,994 128,978 2,016
numeric(20,0) 65,401 64,894 507
numeric(38,0) 65,401 64,894 507
varchar(00001) 209,694 174,745 34,949 one character string
varchar(00008) 209,694 174,745 34,949 one character string
varchar(00008) 87,372 80,651 6,721 full length string
varchar(00064) 209,694 174,745 34,949 one character string
varchar(00064) 15,418 15,195 223 full length string
varchar(04096) 209,694 174,745 34,949 one character string
varchar(04096) 255 255 0 full length string
varchar(65535) 209,694 174,745 34,949 one character string
varchar(65535) 15 15 0 full length string

Data Type
Bits/Value
(NN)

Bits/Value
(N)

Unused
Bytes
(NN)

Unused
Bytes (N) Notes

boolean 1 2 113 113
char(0001) 8 9 113 113 one

character
string

char(0008) 64 65 168 166 one
character
string

char(0008) 64 65 168 166 full length
string

char(0064) 512 513 576 581 one
character
string

char(0064) 512 513 576 581 full length
string

date 32 33 236 236
float4 32 33 236 236
float8 64 65 624 629
int2 16 17 138 139
int4 32 33 236 236
int8 64 65 624 629
time 64 65 624 629
timestamp 64 65 624 629
timestamptz 64 65 624 629
timetz 64 65 624 629
numeric(1,0) 64 65 624 629
numeric(19,0)64 65 624 629

7

Data Type
Bits/Value
(NN)

Bits/Value
(N)

Unused
Bytes
(NN)

Unused
Bytes (N) Notes

numeric(20,0)128 129 2160 2160
numeric(38,0)128 129 2160 2160
varchar(00001)40 48 106 106 one

character
string

varchar(00008)40 48 106 106 one
character
string

varchar(00008)96 104 112 113 full length
string

varchar(00064)40 48 106 106 one
character
string

varchar(00064)544 552 152 121 full length
string

varchar(04096)40 48 106 106 one
character
string

varchar(65535)40 48 106 106 one
character
string

Data Type
Bits/Value
(NN)

Bits/Value
(N)

Unused
Bytes
(NN)

Unused
Bytes (N) Notes

char(4096) 32768 32769 32768 32737 one
character
string

char(4096) 32768 32769 32768 32737 full length
string

varchar(04096)32768 32769 4096 4064 full length
string

varchar(65535)524312 524320 65491 65476 full length
string

8

Discussion

To begin with, we enumerate all the encodings Redshift knows about.

There’s a function, format_encoding(int4), which takes a single int4 argu-
ment which is an encoding ID (which range from 0 to 255 - outside this range
and you get an error), and returns a string which is the name of the encoding,
or “unknown” if there is no encoding for the given ID.

Setting aside all “unknown”s, we find the following;

ID Name
0 none
1 bytedict
2 delta
3 lzo
4 runlength
5 delta32k
7 text255
11 globaldict256
12 globaldict64k
13 globaldict4B
15 mostly8
16 mostly16
17 mostly32
18 text32k
19 zstd
20 az64
128 none
131 lzo
133 delta32k
147 zstd
148 az64

There are a couple of items of note;

1. none means raw.
2. Some encodings have more than one ID.
3. There’s a set of three globaldict encodings which are not mentioned in

the documentation.

9

Next, let’s check to see which data types can use which encodings.

(We can only specify encodings by their names, so we can’t try to use the
different IDs of encodings with multiple IDs. Also note normally I always use
Redshift internal names, so say int8, which is the name you find in the system
tables, rather than bigint, which is an alias, but with raw encoding the internal
name is none but you can’t use that with CREATE TABLE - it only understands
raw.)

Valid Encodings for Data Types

Data Type Encodings
bool raw, runlength, zstd
bpchar bytedict, lzo, raw, runlength, zstd
char bytedict, lzo, raw, runlength, zstd
date az64, bytedict, delta, delta32k, lzo,

raw, runlength, zstd
float4 bytedict, raw, runlength, zstd
float8 bytedict, raw, runlength, zstd
geometry raw
hllsketch raw
int2 az64, bytedict, delta, lzo, mostly8,

raw, runlength, zstd
int4 az64, bytedict, delta, delta32k, lzo,

mostly16, mostly8, raw, runlength,
zstd

int8 az64, bytedict, delta, delta32k, lzo,
mostly16, mostly32, mostly8, raw,
runlength, zstd

numeric az64, bytedict, delta, delta32k, lzo,
mostly16, mostly32, mostly8, raw,
runlength, zstd

super lzo, raw, zstd
text bytedict, lzo, raw, runlength, text32k,

zstd
time az64, bytedict, delta, delta32k, lzo,

raw, runlength, zstd
timestamp az64, bytedict, delta, delta32k, lzo,

raw, runlength, zstd
timestamptz az64, bytedict, delta, delta32k, lzo,

raw, runlength, zstd
timetz az64, bytedict, delta, delta32k, lzo,

raw, runlength, zstd
varchar bytedict, lzo, raw, runlength, text255,

text32k, zstd

Valid Data Types for Encodings

10

Encoding Data Types
az64 date, int2, int4, int8, numeric, time,

timestamp, timestamptz, timetz
bytedict bpchar, char, date, float4, float8, int2,

int4, int8, numeric, text, time,
timestamp, timestamptz, timetz,
varchar

delta date, int2, int4, int8, numeric, time,
timestamp, timestamptz, timetz

delta32k date, int4, int8, numeric, time,
timestamp, timestamptz, timetz

globaldict256
globaldict4B
globaldict64k
lzo bpchar, char, date, int2, int4, int8,

numeric, super, text, time, timestamp,
timestamptz, timetz, varchar

mostly16 int4, int8, numeric
mostly32 int8, numeric
mostly8 int2, int4, int8, numeric
raw bool, bpchar, char, date, float4, float8,

geometry, hllsketch, int2, int4, int8,
numeric, super, text, time, timestamp,
timestamptz, timetz, varchar

runlength bool, bpchar, char, date, float4,
float8, int2, int4, int8, numeric, text,
time, timestamp, timestamptz,
timetz, varchar

text255 varchar
text32k text, varchar
zstd bool, bpchar, char, date, float4,

float8, int2, int4, int8, numeric, super,
text, time, timestamp, timestamptz,
timetz, varchar

The docs page for which encodings support which data types is here. It seems
evidently hand-maintained, as it is out of date.

1. All encodings which can support time and timetz (az64, bytedict,
‘delta’, delta32k, lzo, runlength, zstd) are missing support for those
two data types.

2. ‘delta’ and delta32k support for timestamptz is missing.
3. ‘lzo’ and ‘zstd’ support for ‘super’ is missing.

I may be wrong, but it seems obvious to me any serious documentation for a
continually evolving software product must at least in part to be automatically
generated if it is to avoid becoming increasingly inaccurate over time.

It also would seem if there’s any ongoing checking of the docs, it is ineffec-
tive, since we see here the most simple, basic and fundamental information is

11

https://docs.aws.amazon.com/redshift/latest/dg/c_Compression_encodings.html

inaccurate.

Having then set the scene, both as you will see for the quality of the documen-
tation, as well as for encodings, let us turn to each encoding in turn, and see
for each what we can find out.

We turn now to the raw encoding.

Being what it is, there’s nothing to say about how raw encodes - but by being
raw, by doing nothing, it allows us to examine other properties of storing rows
in blocks. In particular, a critical question turns out to be how many rows of
each data type fit into a single block.

This turns out to be an excellent question, because we find that first, NULL or
NOT NULL matters, and, secondly, it’s not just a case of there being as many
rows as will fit in one megabyte; there’s some unused space, and it seems to be
the longer the data type, the more unused space there is.

Here we see the number of values stored per block when NOT NULL is set “(NN)”,
the number when NULL is set “(N)” and the difference between the two.

Data Type Values/Block (NN) Values/Block (N) Diff Notes
boolean 8,387,697 4,193,849 4,193,848
char(0001) 1,048,463 931,967 116,496 one character string
char(0008) 131,051 129,035 2,016 one character string
char(0008) 131,051 129,035 2,016 full length string
char(0064) 16,375 16,343 32 one character string
char(0064) 16,375 16,343 32 full length string
char(4096) 248 248 0 one character string
char(4096) 248 248 0 full length string
date 262,085 254,143 7,942
float4 262,085 254,143 7,942
float8 130,994 128,978 2,016
int2 524,219 493,382 30,837
int4 262,085 254,143 7,942
int8 130,994 128,978 2,016
time 130,994 128,978 2,016
timestamp 130,994 128,978 2,016
timestamptz 130,994 128,978 2,016
timetz 130,994 128,978 2,016
numeric(1,0) 130,994 128,978 2,016
numeric(19,0) 130,994 128,978 2,016
numeric(20,0) 65,401 64,894 507
numeric(38,0) 65,401 64,894 507
varchar(00001) 209,694 174,745 34,949 one character string
varchar(00008) 209,694 174,745 34,949 one character string
varchar(00008) 87,372 80,651 6,721 full length string
varchar(00064) 209,694 174,745 34,949 one character string
varchar(00064) 15,418 15,195 223 full length string
varchar(04096) 209,694 174,745 34,949 one character string
varchar(04096) 255 255 0 full length string

12

Data Type Values/Block (NN) Values/Block (N) Diff Notes
varchar(65535) 209,694 174,745 34,949 one character string
varchar(65535) 15 15 0 full length string

The first and most startling observation is the huge number of values stored
by boolean, which must be 1 bit per value to be storing 8.3m values in a one
megabyte block. We also note that setting NULL (as opposed to NOT NULL)
roughly halves the number of values - clearly, a 1 bit flag per value is used to
indicate whether a value is NULL or not. More on this below.

The official documentation for boolean, found here, states boolean is 1 byte
per value, and, what’s more, that it is 1 byte whether true, false or NULL, which
is not just wrong, but also misleads readers as to how NULL is handled.

Moving on to char, we can see that the maximum length of the char in the DDL
determines the store required; the actual length of the string is not relevant.
When we get to char(4096), there are only 248 values in a block; each when
NULL requires one more bit to store, but 248 bits is small enough that it makes
no difference to the number of values which can be stored.

The numeric type is worth a mention, in that precision 1 to 19 gives an 8 byte
value, precision 20 to 38 gives a 16 byte value. This is why I select the precisions
1, 19, 20 and 38, to demonstrate the transition.

Finally, coming to varchar, we find that this data type requires 1 byte, rather
than 1 bit, to indicate NULL.

So, now we now directly from STV_BLOCKLIST how many values are in a block,
both for NOT NULL and NULL. We can then divide the size of the block by the
number of values, to see how many bits are being used per value.

There is in fact always some unused space, but the number of bits must be an
integer, so if we end up with say 32.2 bits being used per value, then the number
of bits must be 32, and we can compute the amount of unused space from the
fractional part of the number.

Note here we have bits per value, but bytes of unused space.

Data Type
Bits/Value
(NN)

Bits/Value
(N)

Unused
Bytes
(NN)

Unused
Bytes (N) Notes

boolean 1 2 113 113
char(0001) 8 9 113 113 one

character
string

char(0008) 64 65 168 166 one
character
string

char(0008) 64 65 168 166 full length
string

13

https://docs.aws.amazon.com/redshift/latest/dg/r_Boolean_type.html

Data Type
Bits/Value
(NN)

Bits/Value
(N)

Unused
Bytes
(NN)

Unused
Bytes (N) Notes

char(0064) 512 513 576 581 one
character
string

char(0064) 512 513 576 581 full length
string

date 32 33 236 236
float4 32 33 236 236
float8 64 65 624 629
int2 16 17 138 139
int4 32 33 236 236
int8 64 65 624 629
time 64 65 624 629
timestamp 64 65 624 629
timestamptz 64 65 624 629
timetz 64 65 624 629
numeric(1,0) 64 65 624 629
numeric(19,0)64 65 624 629
numeric(20,0)128 129 2160 2160
numeric(38,0)128 129 2160 2160
varchar(00001)40 48 106 106 one

character
string

varchar(00008)40 48 106 106 one
character
string

varchar(00008)96 104 112 113 full length
string

varchar(00064)40 48 106 106 one
character
string

varchar(00064)544 552 152 121 full length
string

varchar(04096)40 48 106 106 one
character
string

varchar(65535)40 48 106 106 one
character
string

So, quite a few matters to note;

1. boolean is 1 bit per value
2. char always uses the maximum length specified in the DDL
3. all data types, except varchar, use one additional bit per value if the

column is NULL (as opposed to NOT NULL), which will matter for small
data types once you get into Big Data

14

4. varchar stores only the actual length of the string, plus a four byte header
(which presumably indicates length)

5. varchar uses 1 byte per value if the column is NULL
6. As mentioned in a previous white paper, numeric is 8 bytes up to precision

19, then becomes 16 bytes. The actual value stored makes no difference;
it is and only is the DDL which determines the data type length.

So it is then that a varchar(1) NULL is 48 bits in length, carrying 8 bits of
data. Don’t do that - if you don’t need UTF-8, use a char(1) NULL, which is 9
bits per value.

Now, we computed the unused space by dividing the size of the block by the
number of values, to see how many bits are being used per value. However, if
the number of values stored in one block is the same for both NULL and NOT
NULL (as happens with the long char and varchar data types), this approach
partially fails, in that it ends up thinking the amount of unused space is the
same in both cases - we already known, from what we’ve seen above, that this
is not so. All that’s actually happening is the overheads of handling NULL are
so small, given the very small number of values, that they do not change the
number of values which can be stored in one block.

In these special cases, the four of them below, I have in the script manually
specified the number of bits per value, based on the knowledge from the table
above, and then computed the unused space for NULL and NOT NULL.

Data Type
Bits/Value
(NN)

Bits/Value
(N)

Unused
Bytes
(NN)

Unused
Bytes (N) Notes

char(4096) 32768 32769 32768 32737 one
character
string

char(4096) 32768 32769 32768 32737 full length
string

varchar(04096)32768 32769 4096 4064 full length
string

varchar(65535)524312 524320 65491 65476 full length
string

What’s interesting here is that the amount of unused space is large. For varchar
it makes sense - the space remaining is non-trivial, but it’s always smaller than
the amount needed for one more value to be stored - but for char, it doesn’t
make sense. A char(4096) has 32,768 unused bytes in each block. There are
248 values being stored, another 8 values could be stored (7 if NULL). What
gives?

Well, I have a bit of a suspicion this - the unused space - is being done to improve
VACUUM performance. If a user inserts only a few rows, you can maybe get away
with only needing to resort the individual blocks which each take some of the
new rows, because they have room to take them; it saves you needing to resort
every block after the blocks which take new rows, which you would have to do
if each block was already completely full.

15

Conclusions

The official documentation is out of date with regard to which encodings support
which data types.

1. All encodings which can support time and timetz (az64, bytedict,
delta, delta32k, lzo, runlength, zstd) are missing support for those
two data types.

2. ‘delta’ and delta32k support for timestamptz is missing.
3. ‘lzo’ and ‘zstd’ support for ‘super’ is missing.

The boolean data type is 1 bit in size (the documentation states 1 byte; this is
incorrect).

Setting a column to NULL (as opposed to NOT NULL) requires an additional 1 bit
of store per value, except for varchar, which requires an additional 1 byte of
store per value.

Blocks when full, in the sense that an additional value will lead to a new block
being formed, have a little unused space. The amount varies by data type, and
increases as the data type becomes larger (in terms of bytes per value). Typically
the unused space is small, on the order of hundreds of bytes, but for long char
and varchar strings (remembering that char always uses the full length of the
DDL length, but varchar only uses the actual length of the string, plus a four
byte length header) the unused space becomes larger, with char(4096) leaving
32737 bytes unused and varchar(65535) with a full length string leaving 65,476
bytes unused (the latter being understandable, as there is not enough room for
another value).

I have a suspicion the unused space is to help with VACUUM performance in
certain situations, but it’s a guess.

16

https://docs.aws.amazon.com/redshift/latest/dg/c_Compression_encodings.html

Revision History

v1
• Initial release.

v2
• Added “About the Author”. made site name in title a link, and made each

chapter start a new page.
• Updated links to amazonredshiftresearcproject.org to redshiftresearcpro-

ject.org.

v3
• Web-site name changed to “Redshift Observatory”.
• Updated links from redshiftresearcproject.org to redshift-observatory.ch.

17

Appendix A : Raw Data
Dump

Note these results are completely unprocessed; they are a raw dump of the
results, so the original, wholly unprocessed data, is available.

{'proofs': {'dc2.large': {2: {'data_type_encodings': {'bool': ['raw',
'runlength',
'zstd'],

'bpchar': ['bytedict',
'lzo',
'raw',
'runlength',
'zstd'],

'char': ['bytedict',
'lzo',
'raw',
'runlength',
'zstd'],

'date': ['az64',
'bytedict',
'delta',
'delta32k',
'lzo',
'raw',
'runlength',
'zstd'],

'float4': ['bytedict',
'raw',
'runlength',
'zstd'],

'float8': ['bytedict',
'raw',
'runlength',
'zstd'],

'geometry': ['raw'],
'hllsketch': ['raw'],
'int2': ['az64',

'bytedict',

18

'delta',
'lzo',
'mostly8',
'raw',
'runlength',
'zstd'],

'int4': ['az64',
'bytedict',
'delta',
'delta32k',
'lzo',
'mostly16',
'mostly8',
'raw',
'runlength',
'zstd'],

'int8': ['az64',
'bytedict',
'delta',
'delta32k',
'lzo',
'mostly16',
'mostly32',
'mostly8',
'raw',
'runlength',
'zstd'],

'numeric': ['az64',
'bytedict',
'delta',
'delta32k',
'lzo',
'mostly16',
'mostly32',
'mostly8',
'raw',
'runlength',
'zstd'],

'super': ['lzo',
'raw',
'zstd'],

'text': ['bytedict',
'lzo',
'raw',
'runlength',
'text32k',
'zstd'],

'time': ['az64',
'bytedict',
'delta',

19

'delta32k',
'lzo',
'raw',
'runlength',
'zstd'],

'timestamp': ['az64',
'bytedict',
'delta',
'delta32k',
'lzo',
'raw',
'runlength',
'zstd'],

'timestamptz': ['az64',
'bytedict',
'delta',
'delta32k',
'lzo',
'raw',
'runlength',
'zstd'],

'timetz': ['az64',
'bytedict',
'delta',
'delta32k',
'lzo',
'raw',
'runlength',
'zstd'],

'varchar': ['bytedict',
'lzo',
'raw',
'runlength',
'text255',
'text32k',
'zstd']},

'data_type_values_per_block': [('boolean',
8387697,
4193849,
4193848,
''),

('char(0001)',
1048463,
931967,
116496,
'one character '
'string'),

('char(0008)',
131051,
129035,

20

2016,
'one character '
'string'),

('char(0008)',
131051,
129035,
2016,
'full length '
'string'),

('char(0064)',
16375,
16343,
32,
'one character '
'string'),

('char(0064)',
16375,
16343,
32,
'full length '
'string'),

('char(4096)',
248,
248,
0,
'one character '
'string'),

('char(4096)',
248,
248,
0,
'full length '
'string'),

('date',
262085,
254143,
7942,
''),

('float4',
262085,
254143,
7942,
''),

('float8',
130994,
128978,
2016,
''),

('int2',
524219,

21

493382,
30837,
''),

('int4',
262085,
254143,
7942,
''),

('int8',
130994,
128978,
2016,
''),

('time',
130994,
128978,
2016,
''),

('timestamp',
130994,
128978,
2016,
''),

('timestamptz',
130994,
128978,
2016,
''),

('timetz',
130994,
128978,
2016,
''),

('numeric(1,0)',
130994,
128978,
2016,
''),

('numeric(19,0)',
130994,
128978,
2016,
''),

('numeric(20,0)',
65401,
64894,
507,
''),

('numeric(38,0)',
65401,

22

64894,
507,
''),

('varchar(00001)',
209694,
174745,
34949,
'one character '
'string'),

('varchar(00008)',
209694,
174745,
34949,
'one character '
'string'),

('varchar(00008)',
87372,
80651,
6721,
'full length '
'string'),

('varchar(00064)',
209694,
174745,
34949,
'one character '
'string'),

('varchar(00064)',
15418,
15195,
223,
'full length '
'string'),

('varchar(04096)',
209694,
174745,
34949,
'one character '
'string'),

('varchar(04096)',
255,
255,
0,
'full length '
'string'),

('varchar(65535)',
209694,
174745,
34949,
'one character '

23

'string'),
('varchar(65535)',
15,
15,
0,
'full length '
'string')],

'encodings_data_type': {'az64': ['date',
'int2',
'int4',
'int8',
'numeric',
'time',
'timestamp',
'timestamptz',
'timetz'],

'bytedict': ['bpchar',
'char',
'date',
'float4',
'float8',
'int2',
'int4',
'int8',
'numeric',
'text',
'time',
'timestamp',
'timestamptz',
'timetz',
'varchar'],

'delta': ['date',
'int2',
'int4',
'int8',
'numeric',
'time',
'timestamp',
'timestamptz',
'timetz'],

'delta32k': ['date',
'int4',
'int8',
'numeric',
'time',
'timestamp',
'timestamptz',
'timetz'],

'globaldict256': [],
'globaldict4B': [],

24

'globaldict64k': [],
'lzo': ['bpchar',

'char',
'date',
'int2',
'int4',
'int8',
'numeric',
'super',
'text',
'time',
'timestamp',
'timestamptz',
'timetz',
'varchar'],

'mostly16': ['int4',
'int8',
'numeric'],

'mostly32': ['int8',
'numeric'],

'mostly8': ['int2',
'int4',
'int8',
'numeric'],

'raw': ['bool',
'bpchar',
'char',
'date',
'float4',
'float8',
'geometry',
'hllsketch',
'int2',
'int4',
'int8',
'numeric',
'super',
'text',
'time',
'timestamp',
'timestamptz',
'timetz',
'varchar'],

'runlength': ['bool',
'bpchar',
'char',
'date',
'float4',
'float8',
'int2',

25

'int4',
'int8',
'numeric',
'text',
'time',
'timestamp',
'timestamptz',
'timetz',
'varchar'],

'text255': ['varchar'],
'text32k': ['text',

'varchar'],
'zstd': ['bool',

'bpchar',
'char',
'date',
'float4',
'float8',
'int2',
'int4',
'int8',
'numeric',
'super',
'text',
'time',
'timestamp',
'timestamptz',
'timetz',
'varchar']},

'enumerated_encodings': ['INFO: 0,none',
'INFO: 1,bytedict',
'INFO: 2,delta',
'INFO: 3,lzo',
'INFO: 4,runlength',
'INFO: 5,delta32k',
'INFO: 7,text255',
'INFO: '
'11,globaldict256',
'INFO: '
'12,globaldict64k',
'INFO: 13,globaldict4B',
'INFO: 15,mostly8',
'INFO: 16,mostly16',
'INFO: 17,mostly32',
'INFO: 18,text32k',
'INFO: 19,zstd',
'INFO: 20,az64',
'INFO: 128,none',
'INFO: 131,lzo',
'INFO: 133,delta32k',

26

'INFO: 147,zstd',
'INFO: 148,az64']}}},

'tests': {'dc2.large': {2: {}}},
'versions': {'dc2.large': {2: 'PostgreSQL 8.0.2 on i686-pc-linux-gnu, '

'compiled by GCC gcc (GCC) 3.4.2 20041017 (Red '
'Hat 3.4.2-6.fc3), Redshift 1.0.32574'}}}

27

About the Author

I am a C programmer - kernel development, high performance computing, net-
working, data structures and so on.

I read the C. J. Date book, the classic text on relational database theory, and
having learned the principles, wrote a relational database from scratch in C,
which purely by chance set me up quite nicely for what came next, moving into
data engineering in late 2011, when I joined as the back-end engineer two friends
in their startup.

In that startup, I began using Redshift the day it came out, in 2012 (we had
been trying to get into the beta programme).

We were early, heavy users for a year and a half, and I ending up having monthly
one-to-one meetings with one of the Redshift team managers, where one or two
features which are in Redshift today originate from suggestions made in those
meetings, such as the distribution style ALL.

Once that was done, after a couple of years of non-Redshift data engineering
work, I returned to Redshift work, and then in about mid-2018 contracted with
a publisher to write a book about Redshift.

The book was largely written but it became apparent I wanted to do a lot of
things which couldn’t be done with a book - republish on every new Redshift
release, for example - and so in the end I stepped back from the contract and de-
veloped the web-site, where I publish investigation into, and ongoing monitoring
of, Redshift.

So for many years now I’ve been investigating Redshift sub-systems full-time,
one by one, and this site and these investigations are as far as I know the and
the only source of this kind of information about Redshift.

Redshift Cluster Cost Reduction Service
I provide consultancy services for Redshift - advice, design, training, getting
failing systems back on their feet pronto, the usual gamut - but in particular
offer a Redshift cluster cost reduction service, where the fee is and only is one
month of the savings made.

Broadly speaking, to give guidance, savings are expected fall into one of two
categories; either something like 20%, or something like 80%. The former is

28

for systems where the business use case is such that Redshift cannot be oper-
ated correctly, and this outcome requires no fundamental re-engineering work,
the latter is for systems where Redshift can be operated correctly, and usually
requires fundamental re-engineering work (which you may or may not wish to
engage in, despite the cost savings, in which case we’re back to the 20%).

Details and contact information are on the web-site.

29

https://www.redshiftresearchproject.org#page_technicalresources

	Introduction
	Test Method
	Results
	dc2.large, 2 nodes (1.0.32574)
	Enumerated Encodings
	Valid Encodings for Data Types
	Valid Data Types for Encodings
	raw Encoding

	Discussion
	Valid Encodings for Data Types
	Valid Data Types for Encodings

	Conclusions
	Revision History
	v1
	v2
	v3

	Appendix A : Raw Data Dump
	About the Author
	Redshift Cluster Cost Reduction Service

