Redshift Observatory

System Table Tracker

System view pg_catalog.svcs_window version 1.0.76759 / 2024-10-18

schema name column data type
pg_catalog svcs_window endtime timestamp
pg_catalog svcs_window is_diskbased char(1)
pg_catalog svcs_window query int4
pg_catalog svcs_window rows int8
pg_catalog svcs_window segment int4
pg_catalog svcs_window slice int4
pg_catalog svcs_window starttime timestamp
pg_catalog svcs_window step int4
pg_catalog svcs_window tasknum int4
pg_catalog svcs_window userid int4
pg_catalog svcs_window workmem int8

View Text

SELECT stcs.userid,
       map.primary_query AS query,
       stcs.slice,
       stcs.segment,
       stcs.step,
       CAST('1970-01-01 00:00:00' AS timestamp) + (CAST((CAST(stcs.starttime AS numeric) / (1000.0 * 1000.0)) + 946684800.0 AS double precision) * CAST('00:00:01' AS interval)) AS starttime,
       CAST('1970-01-01 00:00:00' AS timestamp) + (CAST((CAST(stcs.endtime AS numeric) / (1000.0 * 1000.0)) + 946684800.0 AS double precision) * CAST('00:00:01' AS interval)) AS endtime,
       stcs.tasknum,
       stcs.rows,
       stcs.is_diskbased,
       stcs.workmem
FROM stcs_window AS stcs
     INNER JOIN stcs_concurrency_scaling_query_mapping AS map ON map.concurrency_scaling_query = stcs.query
WHERE stcs.__cluster_type = CAST('cs' AS bpchar)
  AND to_date(CAST(stcs.__log_generated_date AS text),
              CAST('YYYYMMDD' AS text)) > (getdate() - CAST('7 days' AS interval))
  AND to_date(CAST(map.__log_generated_date AS text),
              CAST('YYYYMMDD' AS text)) > (getdate() - CAST('7 days' AS interval))
  AND CAST(map.concurrency_scaling_cluster AS text) = split_part(CAST(stcs.__path AS text),
                                                                 CAST('/' AS text),
                                                                 10)


Home 3D Друк Blog Bring-Up Times Consultancy Cross-Region Benchmarks Email Forums IRC Mailing Lists Reddit Redshift Price Tracker Redshift Version Tracker Redshift Workbench System Table Tracker The Known Universe Twitter White Papers